home *** CD-ROM | disk | FTP | other *** search
- /*
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that this notice is preserved and that due credit is given
- * to the University of California at Berkeley. The name of the University
- * may not be used to endorse or promote products derived from this
- * software without specific prior written permission. This software
- * is provided ``as is'' without express or implied warranty.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- */
-
- #ifndef lint
- static char sccsid[] = "@(#)cabs.c 5.2 (Berkeley) 4/29/88";
- #endif /* not lint */
-
- /* HYPOT(X,Y)
- * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
- * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
- * CODED IN C BY K.C. NG, 11/28/84;
- * REVISED BY K.C. NG, 7/12/85.
- *
- * Required system supported functions :
- * copysign(x,y)
- * finite(x)
- * scalb(x,N)
- * sqrt(x)
- *
- * Method :
- * 1. replace x by |x| and y by |y|, and swap x and
- * y if y > x (hence x is never smaller than y).
- * 2. Hypot(x,y) is computed by:
- * Case I, x/y > 2
- *
- * y
- * hypot = x + -----------------------------
- * 2
- * sqrt ( 1 + [x/y] ) + x/y
- *
- * Case II, x/y <= 2
- * y
- * hypot = x + --------------------------------------------------
- * 2
- * [x/y] - 2
- * (sqrt(2)+1) + (x-y)/y + -----------------------------
- * 2
- * sqrt ( 1 + [x/y] ) + sqrt(2)
- *
- *
- *
- * Special cases:
- * hypot(x,y) is INF if x or y is +INF or -INF; else
- * hypot(x,y) is NAN if x or y is NAN.
- *
- * Accuracy:
- * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
- * in the last place). See Kahan's "Interval Arithmetic Options in the
- * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
- * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
- * code follows in comments.) In a test run with 500,000 random arguments
- * on a VAX, the maximum observed error was .959 ulps.
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- */
-
- #if defined(vax)||defined(tahoe) /* VAX D format */
- #ifdef vax
- #define _0x(A,B) 0x/**/A/**/B
- #else /* vax */
- #define _0x(A,B) 0x/**/B/**/A
- #endif /* vax */
- /* static double */
- /* r2p1hi = 2.4142135623730950345E0 , Hex 2^ 2 * .9A827999FCEF32 */
- /* r2p1lo = 1.4349369327986523769E-17 , Hex 2^-55 * .84597D89B3754B */
- /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */
- static long r2p1hix[] = { _0x(8279,411a), _0x(ef32,99fc)};
- static long r2p1lox[] = { _0x(597d,2484), _0x(754b,89b3)};
- static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};
- #define r2p1hi (*(double*)r2p1hix)
- #define r2p1lo (*(double*)r2p1lox)
- #define sqrt2 (*(double*)sqrt2x)
- #else /* defined(vax)||defined(tahoe) */
- static double
- r2p1hi = 2.4142135623730949234E0 , /*Hex 2^1 * 1.3504F333F9DE6 */
- r2p1lo = 1.2537167179050217666E-16 , /*Hex 2^-53 * 1.21165F626CDD5 */
- sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */
- #endif /* defined(vax)||defined(tahoe) */
-
- double
- hypot(x,y)
- double x, y;
- {
- static double zero=0, one=1,
- small=1.0E-18; /* fl(1+small)==1 */
- static ibig=30; /* fl(1+2**(2*ibig))==1 */
- double copysign(),scalb(),logb(),sqrt(),t,r;
- int finite(), exp;
-
- if(finite(x))
- if(finite(y))
- {
- x=copysign(x,one);
- y=copysign(y,one);
- if(y > x)
- { t=x; x=y; y=t; }
- if(x == zero) return(zero);
- if(y == zero) return(x);
- exp= logb(x);
- if(exp-(int)logb(y) > ibig )
- /* raise inexact flag and return |x| */
- { one+small; return(x); }
-
- /* start computing sqrt(x^2 + y^2) */
- r=x-y;
- if(r>y) { /* x/y > 2 */
- r=x/y;
- r=r+sqrt(one+r*r); }
- else { /* 1 <= x/y <= 2 */
- r/=y; t=r*(r+2.0);
- r+=t/(sqrt2+sqrt(2.0+t));
- r+=r2p1lo; r+=r2p1hi; }
-
- r=y/r;
- return(x+r);
-
- }
-
- else if(y==y) /* y is +-INF */
- return(copysign(y,one));
- else
- return(y); /* y is NaN and x is finite */
-
- else if(x==x) /* x is +-INF */
- return (copysign(x,one));
- else if(finite(y))
- return(x); /* x is NaN, y is finite */
- #if !defined(vax)&&!defined(tahoe)
- else if(y!=y) return(y); /* x and y is NaN */
- #endif /* !defined(vax)&&!defined(tahoe) */
- else return(copysign(y,one)); /* y is INF */
- }
-
- /* CABS(Z)
- * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
- * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
- * CODED IN C BY K.C. NG, 11/28/84.
- * REVISED BY K.C. NG, 7/12/85.
- *
- * Required kernel function :
- * hypot(x,y)
- *
- * Method :
- * cabs(z) = hypot(x,y) .
- */
-
- double
- cabs(z)
- struct { double x, y;} z;
- {
- return hypot(z.x,z.y);
- }
-
- double
- z_abs(z)
- struct { double x,y;} *z;
- {
- return hypot(z->x,z->y);
- }
-
- /* A faster but less accurate version of cabs(x,y) */
- #if 0
- double hypot(x,y)
- double x, y;
- {
- static double zero=0, one=1;
- small=1.0E-18; /* fl(1+small)==1 */
- static ibig=30; /* fl(1+2**(2*ibig))==1 */
- double copysign(),scalb(),logb(),sqrt(),temp;
- int finite(), exp;
-
- if(finite(x))
- if(finite(y))
- {
- x=copysign(x,one);
- y=copysign(y,one);
- if(y > x)
- { temp=x; x=y; y=temp; }
- if(x == zero) return(zero);
- if(y == zero) return(x);
- exp= logb(x);
- x=scalb(x,-exp);
- if(exp-(int)logb(y) > ibig )
- /* raise inexact flag and return |x| */
- { one+small; return(scalb(x,exp)); }
- else y=scalb(y,-exp);
- return(scalb(sqrt(x*x+y*y),exp));
- }
-
- else if(y==y) /* y is +-INF */
- return(copysign(y,one));
- else
- return(y); /* y is NaN and x is finite */
-
- else if(x==x) /* x is +-INF */
- return (copysign(x,one));
- else if(finite(y))
- return(x); /* x is NaN, y is finite */
- else if(y!=y) return(y); /* x and y is NaN */
- else return(copysign(y,one)); /* y is INF */
- }
- #endif
-